

G. Bollen, S. Schwarz
NSCL, Michigan State University, East Lansing
F. Herfurth
CERN, Geneva, Switzerland

Beam cooling → reduces beam emittance and energy spread

Better ISOL beam quality – better RIA performance and experiments

Cooled beams reduce challenge of isobar separation - cost saver

Beam looses history after cooling – easier beam tuning and operation

Beam Cooling of ISOL Beams at RIA

Beam properties vary with ion source type and operation Long beam transport to separators does not improve beam quality

Typical: 10-25 π mm mrad @ 30 keV\$, $\Delta E \leq 20 eV$ \$F. Wenander et al., NIM B204 (2003) 261

Recognized Method of Choice

Buffergas cooling in RF multipole ion guides or similar devices

Linear RF ion guides and traps

ISOLDE, JYFLTRAP, RIKEN, Louvain-la-Neuve, ANL, NSCL/MSU, HRIBF/ORNL, GSI,...

New generation: Cryogenic ion cooler for LEBIT at the NSCL

Linear ion trap with novel electrode system S. Schwarz et al., NIM B204 (2003) 474

Cryogenic system (80K)

Rare isotope beam cooling works, but ...

- Present ion cooler based on RF ion guides/traps have shown to work very well for <u>low-intensity beams</u> (few nA)
- Room for development: new systems use different geometries, cryogenic temperatures

... does it work at RIA beam intensities of many microamperes?

Status of high intensity beam cooling

- Hardly any systematic experimental study of space charge effects in beam cooling so far
- Until recently no realistic simulation that includes space charge
- First-order extrapolations do not exclude that this is possible (R.B. Moore and O. Gianfrancesco, NIM B204 (2003) 557)

Experiment

Simulations Results

S NSCL

Preliminary

T. Kim, R.B Moore, McGill, Montreal

Beam size as a function of beam current → beam temperature assuming no space charge

New, fast and efficient code at NSCL:

RF + Buffer gas collisions + Coulomb interaction

Agreement for spatial distribution (0 - 1.2 nA) & slow rise of beam temperature

Towards high intensity beam coolers

looks promising

R&D

- More simulations to identify best operational scenarios and geometries
- Build prototype of high intensity cooler and study properties
- Consider space charge compensation with negative ions
- After verification that beam cooling at high-intensities is possible, incorporate in RIA concept and then decide on isobar separator

Improved RIA ISOL beams - Cost reduction - Better operation